Discursive framing of depression in online health communities

Depression is a disease of modernity, where societies impose increased responsibility on the individual, while the individual does not have the opportunity to change his or her circumstances (Sik 2018). In this sense, the problem of depression is embedded into the more general problem of the distortion of social integration.
A current question in sociology is how mental disorders are framed by health professionals and by the patients themselves. A related questions is how psychotherapists transform social suffering into suffering related to the self (see e.g. Flick, 2016).

Previous research in this field has been primarily qualitative. Investigators have used qualitative content analysis of offline texts (personal diaries, letters, interviews) to investigate the framing of depression (e.g. Riskind et al, 1989). We believe that there is significant research utility in the application of automated text analysis methods to investigate the framing of depression in online, patient-generated non-clinical texts.

We investigate the potential for NLP techniques in understanding individual framing of depression in online health communities. Framing of depression is a social construction, it defines the meaning of depression, gives a causal explanation of it and can even determine treatment preferences. The current clinical explanations of depression point to biological, psychological and social discourses (e.g. Comer, 2015).

Forum posts are classified into three framing types by applying different supervised learning algorithms, then distribution and mixture patterns of framing types, their influencing contextual/linguistic/topical factors, and dynamics of these features are examined. We addressed the following questions: How are the three main types of framing distributed? In what pattern are they mixed with each other? What contextual factors (type of forum, communicative behavior of author etc.) influence which framing type is utilized?

Our former publications in related topics

Sik Domonkos: From mental disorders to social suffering: Making sense of depression for critical theories. EUROPEAN JOURNAL OF SOCIAL THEORY (2018)

Sik, Domonkos: Válaszok a szenvedésre: A hálózati szolidaritás elmélete. Budapest, Magyarország : ELTE Eötvös Kiadó (2018) , 228 p.

Sik, Domonkos: A szenvedés határállapotai: Egy kritikai hálózatelmélet vázlata. Budapest, Magyarország : ELTE Eötvös Kiadó (2018) , 246 p.

Deckovic-Dukres, V., Hrkal, J., Németh, R., Vitrai, J., Zach, H.: Inequalities in health system responsiveness. Joint World Health Survey Report Based on Data from Selected Central European Countries, 2007. Jelentés a WHO megbízásából.

Remák, E., Gál, R.I., Németh, R.: Health and morbidity in the accession countries. Country report – Hungary. ENEPRI Research Reports 28, Brussels: ENEPRI, 2006.

Albert, F., Dávid, B., Németh, R.: Social support, social cohesion. In.: National Health Interview Survey 2003, Research Report, 2005. (Hung.)

(magyarul: Albert Fruzsina, Dávid Beáta, Németh Renáta: Társas támogatottság, társadalmi kohézió. In.: Országos Lakossági Egészségfelmérés OLEF2003, Kutatási Jelentés, 2005.)

Results

Bio, psycho or social – Discursive framing of depression in online health communities – IC2S2, 5th International Conference on Computational Social Science, Amsterdam, 2019

In our research we aimed at gathering and automatically classifying online forum posts into the above three framing types by applying different supervised learning algorithms. As our dataset, we decided to use depression-related posts from the most popular English-speaking health forums within the time interval 2016-2018. We obtained only publicly available posts, which are shared willingly by their authors. We used Python to implement our analyses. After pre-processing and feature extraction, the scikit-learn library was used with different algorithms (SVM, Naive Bayes, Logistic Regression and Decision Trees). Our poster can be downloaded here.